A Post-Anesthetic Discharge Scoring System for Home Readiness after Ambulatory Surgery

Frances Chung, FRCPC,* Vincent W.S. Chan, FRCPC,† Dennis Ong, MD‡

Department of Anaesthesia, Toronto Western Division, Toronto Hospital, and University of Toronto, Toronto, Canada.

Study Objective: To evaluate the validity and reliability of an objective scoring system, the Post-Anesthetic Discharge Scoring System (PADSS), which was compared against existing Clinical Discharge Criteria in the ambulatory surgery unit of our hospital.

Design: randomized, open study.

Setting: Ambulatory surgery unit at a university teaching hospital.

Patients: 247 ambulatory surgery patients undergoing general anesthesia.

Interventions: One hour after the operation, the initial assessment using PADSS and the Clinical Discharge Criteria was made by an independent observer. Evaluations were repeated at 30-minute intervals until patients obtained a Post-Anesthetic Discharge Score of at least 9 and fulfilled the Clinical Discharge Criteria.

Measurements and Main Results: There was a close correlation between the end of anesthesia to time patients were fit for discharge using either PADSS or the Clinical Discharge Criteria (Pearson's Correlation Coefficient r = 0.89). The internal consistency reliability of PADSS (alpha = 0.65) was superior to that of the Clinical Discharge Criteria (alpha = 0.14).

Conclusions: We have found PADSS to have superior measurement scaling and diagnostic properties.

Keywords: Ambulatory surgery; patient discharge; postoperative complications.

Introduction

Ambulatory surgery is becoming more common and not only involves simple and short surgical procedures on healthy patients but the trend is towards longer procedures in infants, geriatric, and debilitated patients.1 It is predicted that by the end of this decade, 60% of the hospitals' surgical caseload may be performed on an ambulatory basis.2 The question of how long patients should remain in hospital following ambulatory surgery before they can be discharged safely is crucial to future developments in this area of care.3

Essential to the quality of patient care is the safe timing of patient discharge, in relation to recovery from general anesthesia, regional, or local
anesthesia with sedation. At the time of discharge from the ambulatory surgery unit, the patients should be home-ready, clinically stable and able to rest at home under the care of a responsible adult. The ability to ambulate, the level of hydration, and the ability to tolerate oral intake are unique to the ambulatory surgical patient. The time course of recovery can be divided into early recovery, intermediate recovery, and late recovery. Early recovery is the time interval during which patients emerge from anesthesia, recovering their protective reflexes and motor activity. Intermediate recovery is the period during which coordination and physiologic function normalize and the patient may be considered in a state of "home-readiness" and is able to return home in the company of a responsible person. Later recovery, which can be hours to days, is the period after which the patient has fully recovered and is capable of full psychomotor functioning, including returning to work or driving.

Several discharge criteria have been described but none has been evaluated for their validity and reliability. The patient's readiness for discharge needs to be addressed in a simple, clear, reproducible manner. Nursing staff need to be able to evaluate the postoperative course of the patient in a systemic way and meet guidelines to seek physician consultation when necessary.

In this study, we have designed a simple cumulative index, the Post-Anesthetic Discharge Scoring System (PADSS), to measure home-readiness of ambulatory surgery patients. We have evaluated its validity and reliability against the existing clinical discharge criteria in the ambulatory surgery unit of The Toronto Hospital, Toronto Western Division.

Materials and Methods

After obtaining Institutional Human Ethics Committee approval, patients scheduled for ambulatory surgery were selected at random and informed consent was obtained. The study included 247 patients who had received general anesthesia for a variety of operative procedures. After the operation, they were transported to the postanesthesia care unit. The initial assessment using PADSS and the Clinical Discharge Criteria was made by an independent investigator not directly involved in the care of the patient one hour after the operation (Figure 1). Subsequently, the evaluation was repeated at 30-minute intervals until the patient obtained a Post-Anesthetic Discharge Score of at least 9 and fulfilled the Clinical Discharge Criteria, respectively. The hospital personnel directly involved in the care of the patients were unaware of the scores obtained, and the decision to discharge the patients was made independently by hospital personnel according to the Clinical Discharge Criteria. The time that the patients were actually discharged from the ambulatory surgery unit was recorded.

To eliminate intraobserver and interobserver bias, another 80 patients scheduled for dilatation and curettage (D&C) were studied. For the elimination of intraobserver bias, two investigators, one using PADSS and the other using Clinical Discharge Criteria, assessed 40 patients at 30-minute intervals. To determine interobserver agreement, two investigators assessed 40 patients separately using both PADSS and the Clinical Discharge Criteria at 30-minute intervals.

PADSS is based on five main criteria: (1) vital signs—

1. Vital Signs
 - 2 = Within 20% of preoperative value
 - 1 = 20-40% of preoperative value
 - 0 = >40% preoperative value

2. Activity and mental status
 - 2 = Oriented x3 AND has a steady gait
 - 1 = Oriented x3 OR has a steady gait
 - 0 = Neither

3. Pain, nausea and/or vomiting
 - 2 = Minimal
 - 1 = Moderate, having required treatment
 - 0 = Severe, requiring treatment

4. Surgical bleeding
 - 2 = Minimal
 - 1 = Moderate
 - 0 = Severe

5. Intake and output
 - 2 = Has had PO fluids AND voided
 - 1 = Has had PO fluids OR voided
 - 0 = Neither

Total pads score is 10; Score ≥ 9 considered fit for discharge

Figure 1. The Post-Anesthetic Discharge Scoring System and the Clinical Discharge Criteria used in our ambulatory surgery unit. PO = oral administration.
Appendix. Post-Operative Evaluation Phone Call

<table>
<thead>
<tr>
<th>Date and time of post-op call</th>
<th>/</th>
<th>Hrs</th>
</tr>
</thead>
</table>

Problems since discharge:

Was there any bleeding significant enough for you to return to the hospital or to your doctor? () Yes () No

Do you have a sore throat? () Yes () No

Did you have any hoarseness of voice? () Yes () No

Did you feel you had a temperature? () Yes () No

Did you experience any pain at the operative area? () Yes () No

Did you experience any pain at the injection site? () Yes () No

Did you experience any pain in other areas? () Yes () No

Have you been nauseous or felt that you wanted to vomit? () Yes () No

Did you actually throw up? () Yes () No

Did you experience any headache? () Yes () No

Did you find yourself very sleepy or difficult to wake-up? () Yes () No

Did you feel faint, or lightheaded? () Yes () No

Do you feel any form of generalized discomfort, or weakness? () Yes () No

Do you have any other complaints? ________________________________

What medications did you take? ________________________________

On a scale of 1 to 10, 1 being no activity and 10 being back to your normal activities, where would you rate yourself? (Score 0-10)*

Did you have to go back to the ER or the hospital? () Yes () No

Did you have to call you doctor since discharge? () Yes () No

Reason: ________________________________

Do you wish to make any additional comments? ________________________________

Blood pressure, heart rate, respiratory rate, and temperature; (2) activity and mental status; (3) pain or nausea and/or vomiting; (4) surgical bleeding, and (5) intake/output (Figure 1). Each of the main criteria is graded from 0 to 2, and a summated score of 9 to 10 indicates that patient is fit for discharge.

Qualifications for discharge home included: 1) a post-operative discharge score of greater than or equal to 9;
Table 1. Demographic Data

<table>
<thead>
<tr>
<th></th>
<th>D & C</th>
<th>Arthroscopy, Laparoscopy and minor surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>151</td>
<td>96</td>
</tr>
<tr>
<td>Gender</td>
<td>151 F</td>
<td>43M:53F</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>27 ± 9</td>
<td>38 ± 11</td>
</tr>
<tr>
<td>ASA physical status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>141</td>
<td>75</td>
</tr>
<tr>
<td>II</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Duration of anesthesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(min) Mean ± SEM</td>
<td>20 ± 7</td>
<td>62 ± 26</td>
</tr>
<tr>
<td>End of anesthesia to PADSS (min)</td>
<td>115 (10 to 210)</td>
<td>125 (0 to 385)</td>
</tr>
<tr>
<td>End of anesthesia to CDC (min)</td>
<td>120 (10 to 230)</td>
<td>140 (0 to 385)</td>
</tr>
<tr>
<td>End of anesthesia to actual discharge (min)</td>
<td>170 (20 to 351)*</td>
<td>220 (60 to 485)*</td>
</tr>
</tbody>
</table>

Note: D & C = dilatation and curettage; PADSS = Post-Anesthetic Discharge Scoring System; CDC = Clinical Discharge Criteria.

Results

Two hundred forty-seven patients were entered into the study. The demographic and clinical characteristics of the patients are summarized in Table 1. The surgical procedures included 151 D&Cs (61.1%), 58 arthroscopies (23.5%), 20 laparoscopies (8.1%), and other minor surgical procedures (7.3%). The study population was divided into two groups: D&C (mean duration of anesthesia of 20 minutes), and other procedures: arthro-
Figure 3. Percentage of patients fit for discharge using the Post-Anesthetic Discharge Scoring System and the Clinical Discharge Criteria after undergoing arthroscopy, laparoscopy or other minor surgical procedures. Postop = postoperative.

copy, laparoscopy, and minor surgeries (mean duration of anesthesia of 62 minutes).

At 2.5 hours postoperatively, 96% of the patients who had D&C could have been discharged using PADSS compared to 94.7% patients using the Clinical Discharge Criteria (NS) (Figure 2). Of the patients in the group with longer anesthesia, 88.5% were suitable for discharge 3 hours postoperatively by PADSS compared to 86.5% by the Clinical Discharge Criteria (Figure 3).

On an average, patients who had D&C required 115 (10 to 210) minutes postoperatively to achieve a Post-Anesthetic Discharge Score of at least 9 as compared to 120 (10 to 220) minutes needed to satisfactorily fulfill the Clinical Discharge Criteria (NS). Patients who underwent arthroscopy, laparoscopy, or other minor surgeries needed 125 (0 to 385) minutes to be discharged using PADSS versus 140 (0 to 385) minutes needed for satisfactory fulfillment of the Clinical Discharge Criteria (NS).

The actual postoperative discharge time for the D&C patients was 170 (20 to 351) minutes while for the arthroscopy/laparoscopy/minor surgeries group was 220 (60 to 485) minutes. This was significantly longer than the time needed to achieve a Post-Anesthetic Discharge Score or fulfill the Clinical Discharge Criteria (Table 1, p < 0.05). The time interval was due to patients obtaining home instructions, making follow-up appointments, changing into street clothes, and waiting for their escorts to accompany them home.

There was a close correlation between the discharge time assessed by PADSS or the Clinical Discharge Criteria (Pearson's Correlation Coefficient r = 0.89).

The internal consistency reliability coefficients (Cronbach's Alpha) of PADSS reached 0.65 overall for the D&C type surgical group. For the arthroscopy/laparoscopy/minor surgical group, overall internal consistency coefficient reached 0.48 at 150 minutes post surgery. In the group with longer anesthesia, the largest internal consistency reliability coefficient for the Clinical Discharge Criteria was 0.14 at 120 minutes post-anesthesia while coefficients at all other times were close to 0. The Pearson's Correlation coefficient for the independent observations by two investigators on 40 D&C patients was higher, r = 0.79.

The interrater reliability coefficients (Kappa agreement coefficients) of PADSS were high, 0.84 at one hour and 0.80 at 1.5 hours post-surgery respectively. The interrater reliability coefficients of the Clinical Discharge Criteria were 0.87 at one hour and 0.52 at 1.5 hours post-surgery. All Kappa were significant at a p-value less than 0.001 and were substantial according to the Fleiss criteria. Kappa agreement coefficients were similar to Pearson's Correlation in that the higher the value, the better the correlation.

There were no hospital readmissions or significant postoperative complications by postoperative follow-up telephone call.

Discussion

There is a growing need to design a discharge scoring system so that home-readiness of patients can be addressed in a simple, clear, reproducible manner. It is important to replace subjective clinical impressions by assigning numeric values to parameters indicating recovery so that recovery and achievement of home-readiness become more obvious. The development of any scale is a multi-step process, which is aimed at establishing the scale's validity and its reliability. A scale is valid if it measures what it intends to measure, while reliability refers to its tendency to produce consistent results when applied to the same individual by different observers, or by one observer at different times.

To determine concurrent validity, we compared the discharge times achieved by PADSS with those achieved by the standard Clinical Discharge Criteria of our hospital. Overall, there was a close correlation in discharge times between the two methods (Pearson's Correlation
Coefficient $r = 0.89$). This finding suggests that PADSS can be used to replace the Clinical Discharge Criteria.

Our results showed that patients stayed longer in hospital than indicated by the Clinical Discharge Criteria or PADSS. If the Clinical Discharge Criteria were strictly followed, patients undergoing D&C and arthroscopy, laparoscopy, and other minor surgical procedures could have been discharged 50 minutes and 80 minutes sooner than actually happened. Delay in discharge may be due to failure to evaluate the patients every 30 minutes and escorts not being immediately available to bring patients home. In addition, it is necessary to change the mind-set and practice habits of physicians and nursing staff to speed up discharge after ambulatory surgery.

A measurement is perceived to be reliable if it yields essentially the same measure. When it is repeatedly taken under similar conditions on an individual or an object, the state of the individual or an object is assumed to be constant. The interrater reliability coefficients of PADSS at 1.0 hour and 1.5 hours post surgery was 0.84 and 0.80, respectively, for the D&C patients. The interrater reliability coefficients of the Clinical Discharge Criteria, on the other hand, was 0.87 at 1 hour and 0.52 at 1.5 hours post surgery for the D&C patients. This finding suggests that PADSS has better interobserver agreement for D&C patients.

The ability to tolerate fluids by mouth before discharge is controversial. Although a patient cannot be discharged when he or she is actively vomiting, the ability to tolerate fluids may not be a necessary criterion for discharge. Schreiner et al.16 found that requiring children to drink before hospital discharge appeared to increase the rate of vomiting and prolonged the duration of hospital stay. Similarly, the requirement for patients to have voided before discharge is not universally adopted in most institutions. We have designed a modified PADSS that has eliminated intake of fluids and has voided as a discharge criterion and we are in the process of verifying its safety.15

In this study, we used 30-minute testing intervals to evaluate patients. Difference in recovery parameters between PADSS and the Clinical Discharge Criteria might have been missed because of the length of the testing intervals. In addition, more frequent testing intervals probably would result in earlier and shorter discharge times.

To be useful, a scoring system should be practical, simple, easy to remember, and applicable to all postanesthesia situations. Using only the commonly observed physical signs will avoid any added burden to the postanesthesia care personnel. By assigning numerical values to parameters indicating patient recovery, progress, or lack of it becomes more objective and more easily understood. The scoring system that we have designed is a simple way of providing uniform assessment for all patients. It can determine the optimal length of stay in the ambulatory surgery unit so that it is safe for the patient and also may reduce nursing time per patient and increase the efficiency of nursing staff.

Reduction in the length of stay in the ambulatory surgery unit by the prompt and safe discharge of patients is a cost reduction and labor efficient strategy. Ambulatory surgery in certain procedures is deemed cheaper even when allowing for treatment failures and readmissions.18 However, discharge of patients should be achieved without compromising the quality of patient care, and the discharge scoring system we developed enabled us to discharge patients safely. We have now discharged 30,000 patients home safely with PADSS. These patients had undergone different types of anesthesia: general anesthesia, monitored anesthesia care and regional anesthesia. The system is used with a combination of clinical judgment and common sense.

In conclusion, practical discharge criteria or a post-Anesthetic discharge scoring system should be implemented in every ambulatory surgery center to ensure safe recovery and discharge after anesthesia. PADSS is simple, practical, and safe. It establishes a routine of repeated reevaluation of home-readiness, and it provides a uniform assessment for all outpatients. Home-readiness of these patients means that these patients are suitable for discharge from the ambulatory surgery unit directly to home. It does not mean street fitness of these patients. For example, patients who have arthroscopy surgery on their knees or lower limb orthopedic surgery, often do not have steady gait. They are sometimes discharged by wheelchairs or crutches. Therefore, steady gait is never achieved in these patients. Sometimes, elderly patients may have disorientation after sedation with cataract surgery.19 We discharge these patients home with their spouse. In addition, we also make home-care arrangements for these patients. Further studies on adverse outcomes after discharge are warranted.

Acknowledgment

We acknowledge the assistance of Dr. C. Seyone and Dr. N. Mati in collecting the data.

References